
Interactive Social Network
Visualization

Lu Han
Zilong Jiao

Zhi Xing

Outline
• Accomplishments

• Project workflow

• Distributed crawlers

• Communication channel

• Cinder framework & our implementation

• Physics simulation

• Rendering

• Conclusion

Accomplishments
• The displayed graph looks very cool  

- profile pictures and information

• The software interactively creates Twitter social network graph
starting from a focused user  
- want to test Six Degree of Separation?

• The GUI is really interactive/responsive even when there’re
thousands of nodes  
- distributed crawlers  
- Redis database as data buffer and permanent storage  
- multithreading and memory-caching

• Simulated physics “automatically” clusters the nodes  
- repulsion, attraction, resistance, gravity and more!

Crawler 1

Crawler 2

Distributed crawlers
• Run the same python script

• Keep checking Redis for requests

• Get the neighbors of the requested user, and send
everything to Redis

• Use different OAuth authorizations

• Can be added or removed at runtime

• Allow parallel updates of different users and
circumvention of rate limit

Communication channel
• update@request	
 <list> 

- cinder pushes usernames  
- crawlers pops them

• update@reply	
 <list> 
- crawler pushes usernames  
- cinder pops them

• list@username	
 <list> 
- adjacency lists  
- crawlers write  
- cinder reads

• info@username	
 <hashmap>	
  
- user profile 
- crawlers write  
- cinder reads

Crawler

update@request

update@reply

list@username

info@username

Cinder framework &  
our implementation

SocialNetworkVisualization

AppNative / AppBasic

App

ParticleSystem

Particle

InterfaceGl redisContext

SocialNetworkVisualization

AppNative / AppBasic

App

ParticleSystem

Particle

InterfaceGl redisContext

Color

Texture Vec2

SocialNetworkVisualization

AppNative / AppBasic

App

prepareSettings()

setup()

EventHandlers

update()

draw()

shutdown()

prepareSettings()

setup()

EventHandlers

update()

draw()

shutdown()

- parse arguments
- create textbox
- connect to Redis
- send update request for

the focused account to
Redis

prepareSettings()

setup()

EventHandlers

update()

draw()

shutdown()

mouseUp()	

- unmark the chosen particle

mouseDown()	

- choose an appropriate

particle basing on mouse
positions

- mark the chosen particle

keyDown()	

- get the username from the

selected particle
- send update request for

that username to Redis

prepareSettings()

setup()

EventHandlers

update()

draw()

shutdown()

- get update replies from
Redis and create particles
for new accounts

- calculate physics
- call update on individual

particles (which update
their attributes, physics,
and positions)

prepareSettings()

setup()

EventHandlers

update()

draw()

shutdown()

- draw connections
between particles

- call draw on individual
particles

- draw textbox

is image in memory?

draw image is image downloaded?

load image to memory

draw image

put a download request into
blocking queue

draw a grey background in
the frame

yes no

noyes

Particle::draw()

Set Up
• Particle System

• Particles —> Map<key=Name,
value=Particle>

• Edges —> Vector<(Particle, Particle)>

• Define default distance of edges

• Assign initial coordinates for each
particle

• particle will be evenly surrounded
by its neighbor particles.

• Particle

• radius; (the size of the particle)

• position (current & previous);

• color;

• force;

• mass;

Update
• In order to animate our particle system, we need to update position of each

particle according to physics principle.

• Each particle has:

• Repulsion Force; (Particle to Particle)

• Magnetic; (Edge between particle)

• Resistance Force; (Proportional to particle velocity but opposite direction)

• Centripetal Force; (Proportional to particle and center of screen and lways points to the center)

Centripetal Force

Magnetic From P2

Repulsion From P2

Resistance Force

Velocity Direction

P1

P2

• Pseudo Code for updating the particles:

update() {

if two particles run into each other:

stop calculating force for this pair of particles

else:

calculate repulsion force for this pair of particles (P1,P2), according to equations  
(In terms of particle P1)

Repulsion_Force = Repulsion_Force_Vector * Repulsion_Coefficient;

Repulsion_Coefficient=(current_distance-2*default_distance)*constant*current_
distance* mass;

Repulsion_Force_Vector= Position_of_P1 - Position_of_P2;

calculate magnetic force between each particle pair, according to equation

Magnetic_Force=Velocity_Direction_Vector * (actual_distance-default_distance)

update each particle based on the final force

}

Centripetal Force

Magnetic From P2

Repulsion From P2

Resistance Force

Velocity Direction

P1

P2

• Pseudo Code for updating the particles:

particle.update(){

if (current_particle is selected){

increase mass of particle;

}else {

use default mass;

}

calculate velocity as below:

velocity= (particle_current_position - particle_previous_position) * decay_coefficient

Note: decay_coefficient ensures that the particle will not pass its balance point while being updated

calculate centripetal force:

centripetal_force=gravity_direction_vector * gravity_coefficient * distance_to_screen_center

centripetal_direction_vector=particle_current_position - screen_center

Sum up all computed force to get Final Force;

Update current position of the particle as below:

particle_current_position += velocity+ final_force / mass;

}

Centripetal Force

Magnetic From P2

Repulsion From P2

Resistance Force

Velocity Direction

P1

P2

Rendering
• Graphic in Cinder is rendered by using OpenGL

• Cinder provides good package for OpenGL functions

• automatically set up OpenGL context

• automatically apply texture image to mesh or shape contour

• gl::draw() does them all

• Can use customized shader (GLSL) to render advanced image

OpenGL Context
Reset OpenGL

Canvas Background Render Edges

Draw Particle  
As Rectangle

Apply Texture
to Particle Shape

Draw Full Info

Texture not Ready

Texture is Ready

Particle is selected

• Draw shapes in Cinder

• gl::drawSolidRect();

• gl::drawStrokedRoundedRect, etc.

• Draw texture in Cinder

• gl::draw(image, top_left_corner, bot_right_corner);

• Draw text in Cinder

• gl::TextureFontRef text;

• text.drawStringWrapped();

• If render purely with OpenGL, developers have to much more code to achieve similar result.

• E.g. While drawing rectangle, user has to specify 4 different vertexes and then connect
them with straight line in correct order.

Rendering

@user_name: DO
Followers: 20
Friends: 20
Tweets: 100

Conclusion
• Cinder is very easy to use

• nicely packed built-in OpenGL library

• automatically generate templet for creative coding

• automatically does rendering context set up

• Redis is a very good data buffer

• support multi-language

• acting as communication channel between different program
components, which can be written by different languages

• can retrieve and store data in different format

Conclusion
• Difficulties

• Stabilizing physics simulation
• particles can pass their balance point

• Slow rendering speed
• need to download to many images
• loading images as texture is slow

• Finding way out & Surprises
• using memory caching to reduce the slowing image loading speed
• using multithreading to concurrently download images
• add resistance force, velocity decaying method and centripetal force  

to stabilize physics simulation
• our program, which can only render at most 200 particles before, now can render

thousands particles.
• the simulation is stable, and all the particles intends to get stuck into a location eventually

Thank you.

Q & A

