Interactive Social Network
Visualization

Lu Han
Z1long Jiao
/Zhi Xing

Outline

+ Accomplishments

* Project workflow

» Distributed crawlers

« Communication channel

» Cinder framework & our implementation
+ Physics simulation

- Rendering

« Conclusion

@ SocialNetworkVisualization
| NN

UPDATE
USERNAME: @

OK

oLve

"

e

SU
=015
AN
9

4

O

—

E

271% (4> Wed 4:12PM Q

e

@ SocialNetworkVisualization
| NN

UPDATE
USERNAME: @

OK

A
-
?
]
SU
& 4 A
a2
{ P4 g
N
-

4

m O

—

E

27% (4> Wed 4:12PM Q

voini

@ SocialNetworkVisualization $ MO T o« 28%(4) Wedd:14PM Q'
[JON |

UPDATE

USERNAME: @
OK

7 N
- -
- A LA
A » >
r -
L -
SU
~~ 1 h
v - . m
/
.9 ~
. -
@lfe
’.
) o
NY

A L

@ SocialNetworkVisualization
o]

UPDATE

USERNAME: @
OK

MO T o« 8% Wedd:14PM Q =

@ SocialNetworkVisualization
CXON)

UPDATE
USERNAME: @

0K

e

N

i

L m L=«
SU
)
- A -
& -~
LOS
- I3
. nn i
o .
' 4
2
(@
%
3
'Yy g =
e
E
.5'

28% (4} Wed 416 PM Q

@ SocialNetworkVisualization MO T o 28%(4)F Wedd:16PM Q =

o0 ®
UPDATE ; A o A
USERNAME: @ ¢
0K - o
- = ¥ RHN
- ! - v
MLA
SU
y |
3 ore -
ik
=) 8 e =
‘. .° ~ .‘ A
X ~ SF <y

=
3
D

L
4
¢

i)

PR . B ~ -
3

7!

Accomphshments

The displayed graph looks very cool
- profile pictures and information

- The software interactively creates Twitter social network graph
starting from a focused user
- want to test Six Degree of Separation?

 The GUI 1s really interactive/responsive even when there’re
thousands of nodes
- distributed crawlers
- Redis database as data buffer and permanent storage
- multithreading and memory-caching

- Simulated physics “automatically” clusters the nodes
- repulsion, attraction, resistance, gravity and more!

AM\CiNDER

|
&P redis

_

Distributed crawlers

+ Run the same python script
- Keep checking Redis for requests

- Get the neighbors of the requested user, and send
everything to Redis

« Use difterent OAuth authorizations
« (Can be added or removed at runtime

- Allow parallel updates of different users and
circumvention of rate limit

Communication channel

+ update@request <list>
- cinder pushes usernames
update @request

- crawlers pops them
update @reply

list@username
info@username

+ update@reply <list>
- crawler pushes usernames
- cinder pops them

+ list@username <list>

Crawler

+ info@username <hashmap>

- user profile
- crawlers write
- cinder reads

- adjacency lists
- crawlers write
- cinder reads

Cinder framework &
our implementation

AppNative | AppBasic

SocialNetworkVisualization

InterfaceGl redisContext

AppNative | AppBasic

—<d{ A SocialNetworkVisualization K)

ParticleSystem

>
’I ‘I >I | :8

Particle

InterfaceGl

>
.I ‘I >I | :8

Color

Texture

—</

AppNative | AppBasic

SocialNetworkVisualization

ParticleSystem

&, Particle &,

@

redisContext

prepareSettings()

setup()

— EventHandlers

update()

draw()

shutdown()

II

- parse arguments
- create textbox
- connect to Redis

the focused account t
Redis
_

SR

- send update request for

prepareSettings()

O/rzﬁs setup()

— EventHandlers

update()

draw()

shutdown()

II

mouseDown()

- choose an appropriate
particle basing on mouse
positions

- mark the chosen particle

_

Y

~\

prepareSettings()

setup()

II

— EventHandlers

update()

II

draw()

shutdown()

II

Y

mouseUp()
- unmark the chosen particle

P

J

keyDown ()

- get the username from the
selected particle

- send update request for

kthat username to Redis

/

prepareSettings()

setup()

— EventHandlers

update()

draw()

shutdown()

II

)

- get update replies from
Redis and create particles
for new accounts

- calculate physics

- call update on individual
particles (which update
their attributes, physics,
and positions)

R Y

prepareSettings()

setup()

— EventHandlers

update()

draw()

shutdown()

II

TR

- draw connections
between particles

- call draw on individual
particles

. draw textbox

£

is image in memory?

yes no

l l

load image to memory put a download request into
9 blocking queue
: draw a grey background in

- Particle System

Set Up

Particle

e Particles —> Map<key=Name,
value=Particle>

radius; (the size of the particle)

 Edges —> Vector<(Particle, Particle)> e position (current & previous);

« Define default distance of edges

e color;

e Assign initial coordinates for each
particle e force;
« particle will be evenly surrounded ¢ mass:

by its neighbor particles.

Update

In order to animate our particle system, we need to update position of each
particle according to physics principle.

Each particle has: /@
Centripetal Force
Resistance Force

 Repulsion Force; (Particle to Particle)

. Velocity Direction
Repulsion From P2

« Magnetic; (Edge between particle)

 Resistance Force; (Proportional to particle velocity but opposite direction)

 Centripetal Force; (Proportional to particle and center of screen and Iways points to the center)

* Pseudo Code for updating the particles:

update() { Centripetal For<y@
Resistance Force

if two particles run into each other:

Velocity Direction

stop calculating force for this pair of particles ~fepuision From P2

else:

calculate repulsion force for this pair of particles (P1,P2), according to equations
(In terms of particle P1)

Repulsion_Force = Repulsion_Force Vector * Repulsion_Coefficient;

Repulsion_Coefficient=(current_distance-2*default_distance)*constant*current _
distance” mass;

Repulsion_Force_ Vector= Position_of _P1 - Position_of P2;
calculate magnetic force between each particle pair, according to equation
Magnetic_Force=Velocity Direction_Vector * (actual_distance-default _distance)

update each particle based on the final force

* Pseudo Code for updating the particles:

particle.update(){

if (current_particle is selected){ Centripetal Force

. . Resistance Force
increase mass of parhcle;

lelse {

use default mass; Velocity Direction

Repulsion From P2

}

calculate velocity as below:

velocity= (particle_current_position - particle_previous_position) * decay coefficient

Note: decay_coefficient ensures that the particle will not pass its balance point while being updated
calculate centripetal force:

centripetal_force=gravity direction_vector * gravity coefficient * distance_to_screen_center
centripetal_direction_vector=particle_current_position - screen_center

Sum up all computed force to get Final Force;

Update current position of the particle as below:

particle_current_position += velocity+ final_force / mass;

Rendering

 Graphic in Cinder is rendered by using OpenGL
* (Cinder provides good package for OpenGL functions
* automatically set up OpenGL context
* automatically apply texture image to mesh or shape contour
* gl::draw() does them all

* (Can use customized shader (GLSL) to render advanced image

OpenG L CO ntQXt oy Draw Particle

e
exture not ¥ As Rectangle

Reset OpenGL Texture is Ready Apply Texture
Canvas Background RENCOTECTSS to Particle Shape

P
articla is selected

Draw Full Info

Rendering

Draw shapes in Cinder

gl::drawSolidRect();

Yy

@user_name: DO
Followers: 20

Friends: 20
Tweets: 100

gl::drawStrokedRoundedRect, etc.

Draw texture in Cinder

gl::draw(image, top_left_corner, bot_right_corner);
Draw text in Cinder

gl::TextureFontRef text;

text.drawStringWrapped();
If render purely with OpenGL, developers have to much more code to achieve similar result.

« E.g. While drawing rectangle, user has to specify 4 different vertexes and then connect
them with straight line in correct order.

Conclusion

- Cinder is very easy to use
e nicely packed built-in OpenGL library
e automatically generate templet for creative coding
e automatically does rendering context set up
 Redis is a very good data buffer
e support multi-language

* acting as communication channel between different program
components, which can be written by different languages

e can retrieve and store data in different format

Conclusion

- Difficulties

e Stabilizing physics simulation
* particles can pass their balance point
* Slow rendering speed
* need to download to many images
* |oading images as texture is slow
- Finding way out & Surprises
* using memory caching to reduce the slowing image loading speed
* using multithreading to concurrently download images

* add resistance force, velocity decaying method and centripetal force
to stabilize physics simulation

* our program, which can only render at most 200 particles before, now can render
thousands particles.

* the simulation is stable, and all the particles intends to get stuck into a location eventually

Thank you.

Q&A

